Fluoride Resistant Acid Phosphatase Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Cat No: NA0133 Size:50T/24S

Components:

Extract solution:30 mL×1. Storage at 2-8°C.

Reagent I: 4 mL×1. Storage at 2-8°C. **Reagent II**: 3.6 mL×1. Storage at 2-8°C.

Reagent III: powder×1,. Storage at -20°C. Before use, add 3.5mL of water, dissolve it fully. Unused reagents can be stored at -20°C for 4 weeks. Avoid repeated freezing and thawing.

Reagent IV: powder×1. Storage at 2-8°C. Before use, add 5.5mL of water, dissolve it fully. Unused reagents can be stored at 2-8°C for 4 weeks.

Reagent V: $0.5 \text{ mL} \times 1$. Storage at 2-8°C. According to the ratio of reagent V: distilled water = 1:9 according to the number of samples before use.

Reagent VI: 3.5 mL×1. Storage at 2-8°C.

Reagent VII: 3.5 mL×1. Storage at 2-8°C.

Reagent VIII: 40 mL×1. Storage at 2-8°C.

Standard: 1 mL×1. Storage at 2-8°C. 5 μ mol/mL phenol standard solution. Before use, take 100 μ L of 5 μ mol/mL phenol standard solution in an EP tube, add 700 μ L of distilled water and mix thoroughly to make 0.625 μ mol/mL phenol standard solution..

Product Description:

Fluoride resistant acid phosphatase (FRAP) is a type of acid phosphatase. FRAP is mainly found in the lysosomes of most cells, the prostate gland, brain, liver, spleen, and platelets.

The activity of fluoride-resistant acid phosphatase is not inhibited by fluoride ions, whereas the activity of other acid phosphatases is inhibited by fluoride ions. Under acidic conditions, the fluoride-resistant ion acid phosphatase catalyzes the production of p-nitrophenol from PNPP. The p-nitrophenol appears yellow under alkaline conditions and can be detected at 400 nm absorbance. The darker the yellow color of the product, the higher the activity of the fluorine-resistant ion acid phosphatase, and vice versa, the lower the enzyme activity.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, centrifuge, water bath/incubator, adjustable pipette, 1mL glass cuvette, mortar/homogenizer/cell sonicator, ice and distilled water

Procedure

I. Extraction of crude enzyme solution:

a. Tissue

The ratio of tissue mass (g): the volume of Extract solution (mL) is 1: 5~10 (it is suggested to take about 0.1 g of tissue and add 1mL of Extract solution), ice-bath homogenate. Centrifuge at 8000 g for 10 minutes at 4°C, take the supernatant and placed on the ice for test.

b. Bacteria or cells

The ratio of bacteria/cell amount (10⁴): the volume of Extract solution (mL) is 500~1000:1(it is suggested to take about 5 million bacteria/cells and add 1 mL of Extract solution). Bacteria/cell is split by ultrasonic (placed on ice, 200 W, work time 3 s, interval 10 s, repeat 30 times). Centrifuge at 8000g for 10 minutes at 4°C, take the supernatant and placed on the ice for test.

c. Serum (plasma) sample: Detect sample directly. (If the solution is turbid, centrifuge to take the supernatant and then measure)

II. Determination procedure

a. Preheat the spectrophotometer 30 minutes, adjust wavelength to 400 nm, set zero with distilled water.

b. Then operate table.	(Add the following reagents to the EP tube)

Reagent name	Test tube(T)	Control tube(C)	Standard tube(S)	Blank tube(B)
(µL)				
sample	50	50	-	-
Standard	-	-	50	-
distilled water	-	50	-	50
Reagent I	50	50	50	50
Reagent II	50	50	50	50
Reagent III	50	-	50	50
Reagent IV	50	50	50	50
Reagent V	50	50	50	50
Reagent VI	50	50	50	50
Reagent VII	50	50	50	50
	Reaction for 30 min at 37°C protected from light		-	-
Reagent VIII	600	600	600	600

After mixing, the absorbance at 400 nm was measured and recorded as At, Ac, As, and Ab. Δ At = At-Ac, Δ As= As- Ab. (Standard and standard blank tubes should be done only 1-2 times.)

III. Calculation formula

(1) Calculated by sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol phenol per gram of tissue per minute at 37°C.

FRAP activity (U/g mass) = $(\Delta At \times Cs \div \Delta As) \times Vs \div (W \div Vse \times Vs) \div T \times 10^3 \times F = 20.83 \times \Delta At \div \Delta As \div W \times F$ (2) Calculated by Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production

of 1 nmol phenol per mg protein of tissue per minute at 37°C.

FRAP activity (U/mg prot) = $(\Delta At \times Cs \div \Delta As) \times Vs \div (Cpr \times Vs) \div T \times 10^3 \times F = 20.83 \times \Delta At \div \Delta As \div Cpr \times F$ (3) Calculated by Cell amount

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol phenol per 10^4 cells of tissue per minute at 37° C.

FRAP activity $(U/10^4 \text{ cell}) = (\Delta At \times Cs \div \Delta As) \times Vs \div (N \div Vse \times Vs) \div T \times 10^3 \times F = 20.83 \times \Delta At \div \Delta As \times F$ (4) Calculated by the volume of culture medium

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol phenol every milliliter per minute at 37°C.

FRAP activity (U/mL) =
$$(\Delta At \times Cs \div \Delta As) \times Vs \div Vs \div T \times 10^3 \times F = 20.83 \times \Delta At \div \Delta As \times F$$

Note:

1. If At or ΔAt is greater than 1.2, the sample can be diluted with distilled water or the enzymatic reaction time at 37°C can be shortened; ΔAt is less than 0.01, the sample can be increased or the enzymatic reaction time at 37°C can be extended. The calculation formula was modified simultaneously for the final calculation.

Experimental example:

1. Weigh 0.1074g of rabbit liver tissue, add 1mL of extract for ice bath homogenization, dilute the supernatant 2 times and operate according to the assay procedure, measure with a 1mL glass cuvette to calculate $\Delta At = At - Ac = 0.685 - 0.018 = 0.667$, $\Delta As = As - Ab = 0.582 - 0.031 = 0.551$, bring into Formula calculation.

FRAP activity (U/g mass) =
$$20.83 \times \Delta At \div \Delta As \div W \times F = 469.558$$
 U/g mass

2. Weigh 0.1057 g of bamboo leaves, add 1 mL of extract for ice bath homogenization, operate according to the determination procedure and measure with a 1 mL glass cuvette to calculate $\Delta At = At - Ac = 0.445 - 0.148 = 0.297$, $\Delta As = As - Ab = 0.582 - 0.031 = 0.551$, bring into the formula to calculate.

FRAP activity (U/g mass) =
$$20.83 \times \Delta At \div \Delta As \div W \times F = 106.223$$
 U/g mass

3. 0.05 mL of sheep serum was aspirated and operated according to the assay procedure, measured with a 1 mL glass cuvette to calculate Δ At= At - Ac = 0.084 - 0.028 = 0.056, Δ As = As - Ab = 0.582 - 0.031 = 0.551, brought into the formula to calculate.

FRAP activity (U/mL) =
$$20.83 \times \Delta At \div \Delta As \times F = 2.117 \text{ U/mL}$$

Reference.:

[1] Megat R, Wahab A, Dasor M M, et al. Crevicular tartrate resistant acid phosphatase activity and

rate of tooth movement under different continuous force applications[J]. African journal of pharmacy and pharmacology, 2011, 5(20):2213-2219.

[2] Natas a Mitic, Mohsen Valizadeh, Eleanor W.W. Leung, et al. Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation [J]. Archives of Biochemistry and Biophysics 439 (2005) 154–164.

Related products:

NA0718/NA0498 Tissue and blood alkaline phosphatase (AKP/ALP) activity assay kit NA0719/NA0477 Tissue and blood acid phosphatase (ACP) activity assay kit NA0137/NA0136 Tartrate resistant acid phosphatase activity assay Kit