Pyrroline-5-carboxylic acid reductase (P5CR) activity Activity Assay Kit

Note: Take two or three different samples for prediction before test.
Operation Equipment: Spectrophotometer
Cat No: NA0145
Size:50T/24S

Components:

Extract solution I: $30 \mathrm{~mL} \times 1$. Storage at $2-8^{\circ} \mathrm{C}$.
Extract solution II: $300 \mu \mathrm{~L} \times 1$. Storage at $-20^{\circ} \mathrm{C}$. Reagents are volatile, seal as soon as possible after use and put back to $-20^{\circ} \mathrm{C}$ for storage. The preparation of the extraction solution: according to the sample volume the extraction solution I extraction solution II $=0.01 \mathrm{~mL}: 0.99 \mathrm{~mL}(1 \mathrm{~T})$ ratio of the preparation of the extraction solution, ready to use, forbidden to prepare in advance.

Reagent I: $15 \mathrm{~mL} \times 1$. Storage at $2-8^{\circ} \mathrm{C}$.
Reagent II: $30 \mathrm{~mL} \times 1$. Storage at $2-8^{\circ} \mathrm{C}$.
Reagent III: powder $\times 1$. Storage at $-20^{\circ} \mathrm{C}$. Add 14 mL of reagent I before use and mix thoroughly. The unused reagents can be stored in separate packages at $-20^{\circ} \mathrm{C}$ for 4 weeks, avoid repeated freezing and thawing.

Reagent IV: $8 \mathrm{~mL} \times 1$. Storage at $2-8^{\circ} \mathrm{C}$.
Standard: powder $\times 1$, storage at $-20^{\circ} \mathrm{C}$. Add 1.4 mL distilled water before use $0.2 \mu \mathrm{~mol} / \mathrm{mL}$ NADH standard solution. The unused reagents should be stored in separate containers at $-20^{\circ} \mathrm{C}$ for 2 weeks, avoiding repeated freezing and thawing during the period. Before use, take $50 \mu \mathrm{~L}$ of $2 \mu \mathrm{~mol} / \mathrm{mL}$ NADH standard solution in EP tube, add $750 \mu \mathrm{~L}$ of distilled water to dissolve fully, and prepare $0.125 \mu \mathrm{~mol} / \mathrm{mL}$ NADH standard solution for use.

Product Description:

Pyrroline-5-carboxylate reductase (P5CR) is an important housekeeping protein widely found in prokaryotes and eukaryotes. In the presence of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$, pyrroline-5-carboxylic acid $(\mathrm{P} 5 \mathrm{C})$ is converted to proline by pyrroline-5-carboxylate reductase, and P5CR has also been found to be involved in the metabolism of thioproline in E. coli.

Thioproline is dehydrogenated by pyrroline-5-carboxylate reductase and is accompanied by the conversion of NAD to NADH. In the presence of 1-mPMS, WST-1 reacts with NADH to produce watersoluble formazan with a characteristic absorption peak at 450 nm .

Reagents and Equipment Required but Not Provided:

Spectrophotometer, water bath/constant incubator, adjustable pipette, analytical balance, mortar/homogenizer/cell sonicator , 1 mL glass cuvette, distilled water and ice.

Procedure

I. Extraction of crude enzyme solution:

a. Tissue

The ratio of tissue mass (g): the volume of Extract solution (mL) is 1:5~10 (it is suggested to take about 0.1 g of tissue and add 1 mL of Extract solution), ice-bath homogenate. Centrifuge at 8000 g for 10 minutes at $4^{\circ} \mathrm{C}$, take the supernatant and placed on the ice for test.
b. Bacteria or cells

The ratio of bacteria/cell amount (10^{4}): the volume of Extract solution (mL) is 500~1000:1(it is suggested to take about 5 million bacteria/cells and add 1 mL of Extract solution). Bacteria/cell is split by ultrasonic (placed on ice, 200 W , work time 3 s , interval 10 s , repeat 30 times). Centrifuge at 8000 g for 10 minutes at $4^{\circ} \mathrm{C}$, take the supernatant and placed on the ice for test.
c. Serum (plasma) sample: Detect sample directly. (If the solution is turbid, centrifuge to take the supernatant and then measure)

II. Determination procedure

a. Preheat the spectrophotometer 30 minutes, adjust wavelength to 450 nm , set zero with distilled water.
b. Then operate according to the following table.

Reagent name $(\mu \mathrm{L})$	Test tube(T)	Control tube(C)	Standard tube(S)	Blank tube(B)
Reagent II	450	450	450	450
Reagent III	450	-	-	-
distilled water	-	450	450	550
Reagent IV	100	100	100	100
Standard solution	-	-	100	-
sample	100	100	-	-

Mix thoroughly, react at $37^{\circ} \mathrm{C}$ for 30 min , take $1000 \mu \mathrm{~L}$ in a 1 mL glass cuvette, and measure the absorbance at 450 nm . It was recorded as At , Ac , As and $\mathrm{Ab} . \Delta \mathrm{At}=\mathrm{At}-\mathrm{Ac}, \Delta \mathrm{As}=\mathrm{As}-\mathrm{Ab}$.(Standard and blank tubes should be done only 1-2 times.)

III. Calculation formula

(1) Calculation by sample protein concentration

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol NADH per milligram protein of tissue per minute.

P5CR activity $(\mathrm{U} / \mathrm{mg}$ prot $)=(\Delta \mathrm{At} \times \mathrm{Cs} \div \Delta \mathrm{As}) \times \mathrm{Vs} \div(\mathrm{Cpr} \times \mathrm{Vs}) \div \mathrm{T} \times 10^{3} \times \mathrm{F}$ $=4.167 \times \Delta \mathrm{t} \div \Delta \mathrm{s} \div \mathrm{Cpr} \times \mathrm{F}$
(2) Calculation by sample mass

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol NADH per gram of tissue per minute.

P5CR activity $(\mathrm{U} / \mathrm{g}$ mass $)=(\Delta \mathrm{At} \times \mathrm{Cs} \div \Delta \mathrm{As}) \times \mathrm{Vs} \div(\mathrm{W} \div \mathrm{Vst} \times \mathrm{Vs}) \div \mathrm{T} \times 10^{3} \times \mathrm{F}$

$$
=4.167 \times \Delta t \div \Delta s \div W \times F
$$

(3) Calculation by number of bacteria or cells

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic
production of 1 nmol NADH per 10^{4} cells of bacteria or cells per minute.
P5CR activity $\left(\mathrm{U} / 10^{4}\right.$ cell $)=(\Delta \mathrm{At} \times \mathrm{Cs} \div \Delta \mathrm{As}) \times \mathrm{Vs} \div(500 \div \mathrm{Vst} \times \mathrm{Vs}) \div \mathrm{T} \times 10^{3} \times \mathrm{F}$

$$
=0.0083 \times \Delta \mathrm{t} \div \Delta \mathrm{s} \times \mathrm{F}
$$

(4) Calculated by volume of serum (plasma) and other liquids

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalytic production of 1 nmol NADH per milliliter of serum (plasma) per minute.

P 5 CR activity $(\mathrm{U} / \mathrm{mL})=(\Delta \mathrm{At} \times \mathrm{Cs} \div \Delta \mathrm{As}) \times \mathrm{Vs} \div \mathrm{Vs} \div \mathrm{T} \times 10^{3} \times \mathrm{F}=4.167 \times \Delta \mathrm{t} \div \Delta \mathrm{s} \times \mathrm{F}$
C standard: concentration of NADH standard solution, $0.125 \mu \mathrm{~mol} / \mathrm{mL}$; Vs: volume of sample added to the reaction system, 0.1 mL ; Vst: volume of extract added, 1 mL ; T: reaction time, 30 min ; Cpr: protein concentration, $\mathrm{mg} / \mathrm{mL}$; W: sample mass, g .

Note:

1. If At is greater than 1.5 or $\Delta \mathrm{At}$ is greater than 0.8 , reduce the sample volume or shorten the reaction time; if $\Delta \mathrm{At}$ is less than 0.01 , increase the sample volume or extend the reaction time to 1 h or longer. Note the simultaneous modification of the calculation formula.

Experimental example:

1. Take 0.0993 g of orange leaves, added to the extract for ice bath homogenization, operated according to the assay procedure, and measured with a 1 mL glass cuvette to calculate $\Delta \mathrm{At}=\mathrm{At}-\mathrm{Ac}=0.413-0.324$ $=0.089, \Delta \mathrm{As}=\mathrm{As}-\mathrm{Ab}=0.609-0.363=0.246$, brought into the equation to calculate.
P 5 CR activity (U / g mass) $=4.167 \times \Delta \mathrm{At} \div \Delta \mathrm{As} \div \mathrm{W} \times \mathrm{F}=4.167 \times 0.089 \div 0.246 \div 0.0993=15.182 \mathrm{U} / \mathrm{g}$
2. Take 0.1006 g of mouse kidney tissue, added to the extract for ice bath homogenization, operated according to the assay procedure, and measured with a 1 mL glass cuvette to calculate $\Delta \mathrm{At}=\mathrm{At}-\mathrm{Ac}=$ $0.543-0.461=0.082, \Delta \mathrm{As}=\mathrm{As}-\mathrm{Ab}=0.609-0.363=0.246$, brought into the equation to calculate.
P 5 CR activity $(\mathrm{U} / \mathrm{g}$ mass $)=4.167 \times \Delta \mathrm{At} \div \Delta \mathrm{As} \div \mathrm{W} \times \mathrm{F}=4.167 \times 0.082 \div 0.246 \div 1.006=13.807 \mathrm{U} / \mathrm{g}$
3. Take 0.02 mL of sheep serum and operated according to the assay procedure and measured with a 1 mL glass cuvette to calculate $\Delta \mathrm{At}=\mathrm{At}-\mathrm{Ac}=0.616-0.215=0.401, \Delta \mathrm{As}=\mathrm{As}-\mathrm{Ab}=0.609-0.363=0.246$, brought into the formula to calculate.
P 5 CR activity $(\mathrm{U} / \mathrm{mL})=4.167 \times \Delta \mathrm{At} \div \Delta \mathrm{As} \times \mathrm{F}=4.167 \times 0.401 \div 0.246=6.793 \mathrm{U} / \mathrm{mL}$

Related products:

NA0845/NA0603 Proline (PRO) Content Assay Kit
NA0288/NA0287 1-Pyrroline-5-carboxylic acid synthase (P5CS) activity Assay Kit

