Oxalic Acid Content Assay Kit

Note: It is necessary to predict 2-3 large difference samples before the formal determination.
Operation Equipment: Spectrophotometer
Cat No: NA0300
Size: 50T/48S

Components:

Reagent I: Powder $\times 1$, store at $4^{\circ} \mathrm{C}$. Add 4 mL distilled water before use. Mix thoroughly;
Reagent II: Liquid $25 \mathrm{~mL} \times 1$, store at $4^{\circ} \mathrm{C}$;
Reagent III: Liquid $2 \mathrm{~mL} \times 1$, store at $4^{\circ} \mathrm{C}$ and protect from light;
Reagent IV: Powder $\times 1$, store at $4^{\circ} \mathrm{C}$;
Standard: Powder $\times 1$, store at $4^{\circ} \mathrm{C}$. Add $792 \mu \mathrm{~L}$ distilled water to prepare $100 \mu \mathrm{~mol} / \mathrm{mL}$ oxalic acid standard solution before use.

Product Description:

Oxalic acid is a kind of dicarboxylic acid. It widely exists in the plant kingdom. It has different functions in different fields. In medicine, printing and dyeing, plastics and other industrial production, oxalic acid can be used as pharmaceutical raw materials, complexing agents, bleaching agents, precipitants and reducing agents. From the perspective of food, long-term consumption of vegetables with high oxalic acid content is easy to cause arthritis, low blood calcium, bladder stones, kidney stones and other diseases. Therefore, it is considered to be an antagonist of mineral elements.
Fe^{3+} can form purple complex with sulfosalicylic acid at pH is 2 . It has a characteristic absorption peak at $510 \mathrm{~nm} . \mathrm{Fe}^{3+}$ and sulfosalicylic acid can produce a purple complex. Oxalic acid and oxalate can make it lighter. At the same time, the absorbance of Fe^{3+} and sulfosalicylic acid complex decreases with the increase of oxalic acid. Accordingly, the content of oxalic acid in the sample can be calculated from the reduced absorbance value.

Required but Not Provided:

Spectrophotometer, desk centrifuge, water-bath/constant temperature incubator, transferpettor, 1 mL glass cuvette, mortar/homogenizer, EP tube, ice and distilled water.

Protocol

I. Preparation:

Tissue: according to the tissue weight (g) : the volume of the distilled water (mL) is $1: 5-10$. It is suggested that add 1 mL of distilled water to 0.1 g of tissue. Homogenize on ice. Then add a little reagent IV (about $3-5 \mathrm{mg}$). After shaking and mixing, put it into a $75^{\circ} \mathrm{C}$-water bath to decolorize for 30 min . Shake 2-3 times during this period. Centrifuge at 3000 rpm for 15 minutes at room temperature after decolorization. Take the supernatant on ice for test. (If the tissue precipitation and reagent IV cannot be removed by one-time
centrifugation. It is suggested that the supernatant be centrifuged several times; If the primary decolorization is incomplete, it is recommended to decolorize repeatedly until the solution is colorless or slightly milky white).

II. Determination procedure:

1. Preheat spectrophotometer for 30 minutes, adjust wavelength to 510 nm , set the counter to zero with distilled water.
2. Dilute $100 \mu \mathrm{~mol} / \mathrm{mL}$ oxalic acid standard solution with distilled water to $25, ~ 20, ~ 15, ~ 12, ~ 6, ~ 3, ~ 1.5$, $0.75 \mu \mathrm{~mol} / \mathrm{mL}$ standard solution for standby.
3. Operation table:

Reagent Name $(\mu \mathrm{L})$	Blank tube $\left(\mathrm{A}_{\mathrm{B}}\right)$	Test tube $\left(\mathrm{A}_{\mathrm{T}}\right)$	Standard tube $\left(\mathrm{A}_{\mathrm{S}}\right)$
Reagent I	50	50	50
Reagent II	375	375	375
Reagent III	25	25	25
Distilled water	50	-	-
Sample	-	50	-
Standard	-	-	50
Distilled water	500	500	500
Mix thoroughly. Standing at room temperature for 20 min.			
Add the reaction solution to the 1 mL glass cuvette, and measure the absorption value A at 510 nm. Record as $\mathrm{A}_{\mathrm{B}}, \mathrm{A}_{\mathrm{T}}, \mathrm{A}_{\mathrm{S}} . \Delta \mathrm{A}_{\mathrm{S}}=\mathrm{A}_{\mathrm{B}}-\mathrm{A}_{\mathrm{S}} . \Delta \mathrm{A}_{\mathrm{A}}=\mathrm{A}_{\mathrm{B}}-\mathrm{A}_{\mathrm{T}}$. Blank tube and standard tube only need to test once or twice in the same batch.			

Note: If the sample size is large. According to the proportion of reagent I: reagent II: reagent III $=2: 15: 1$ ($\mathrm{V}: \mathrm{V}: \mathrm{V}$) required by the sample number to prepare the working solution. The sample adding system is $450 \mu \mathrm{~L}$ working solution, $50 \mu \mathrm{~L}$ sample (distilled water or standard solution) and $500 \mu \mathrm{~L}$ distilled water.

III. Oxalate Calculation:

1. Drawing of standard curve

Take the concentration of each standard solution as the x -axis, and the corresponding $\Delta \mathrm{A}$ standard as the y axis, and the linear regression equation $\mathrm{y}=\mathrm{kx}+\mathrm{b}$ is obtained. Bring $\Delta \mathrm{A}$ into the equation to get $\mathrm{x}(\mu$ $\mathrm{mol} / \mathrm{mL}$).
2. Calculate:

Oxalic Acid $(\mathrm{mg} / \mathrm{g}$ weight $)=\mathrm{x} \times \mathrm{V}_{\mathrm{E}} \times \mathrm{M} \times 10^{-3} \div \mathrm{W}=0.09 \mathrm{x} \div \mathrm{W}$
V_{E} : Extract solution volume, 1 mL ;
W: Sample weight, g;
M: Molecular weight of oxalic acid, 90.04;
10^{-3} : Unit conversion factor, $1 \mu \mathrm{~g}=10^{-3} \mathrm{mg}$ 。

Note:

1. When the determination of $\Delta \mathrm{A}$ is greater than 0.8 , it is recommended to dilute the sample with distilled
water before the determination, and multiply the dilution times in the calculation formula.
2. If reagent I and II are combined with reagent III to form working solution for use, it needs to be prepared according to the number of the sample. Do not prepare it all at once.

Related products :

NA0339/NA0338 Shikimic acid Dehydrogenase(SD) Activity Assay Kit
NA0333/NA0332 Lignin Activity Assay Kit
NA0326/NA0325 4-Coumarate CoA Ligase(4CL) Activity Assay Kit
NA0784/NA0543 Creatine Kinase(CK) Activity Assay Kit

Technical Specifications:

Minimum Detection Limit: $0.0982 \mu \mathrm{~mol} / \mathrm{mL}$
Linear Range: $0.75-25 \mu \mathrm{~mol} / \mathrm{mL}$

