Soil N-Acetyl-β-D-Glucosidase (S-NAG) Activity Assay Kit

Note: Take two or three different samples for prediction before test. Operation Equipment: Spectrophotometer Catalog Number: NA0366 Size:50T/24S

Components:

Reagent I: Liquid 40 mL×1. Storage at 4°C.

Reagent II: Powder×1. Storage at -20 $^{\circ}$ C .Dissolve with 7.5 mL of distilled water before use. The left reagent store at -20 $^{\circ}$ C.

Reagent III Liquid 60 mL×1. Storage at 4°C.

Standard: Liquid 1 mL×1. Storage at 4 $^{\circ}$ C. 5 mmol/L Phenol standard solution. Dilute the standard solution for 50 times to 100 µmol/L with the Reagent I before use.

Product Description:

Soil N-acetyl- β -D-glucosidase(S-NAG) is an acid hydrolase in lysosomes secreted by soil microorganisms. The activity of S-NAG is closely related to some pathological condition of the body.

S-NAG can catalyze the 4-Nitrophenyl-N-acetyl- β -D-glucopyranoside to p-nitrophenol. The product has characteristic of absorption at 400 nm. In this kit, the S-NAG activity is quantified by measuring the increase in the color development at 400 nm.

Reagents and Equipment Required but Not Provided:

Spectrophotometer, water-bath, desk centrifuge, transferpettor, 1 mL glass cuvette, analytical balance, mortar, 30 mesh sieve (or samller), ice and distilled water.

Procedure:

I. Preparation of samples

Fresh soil samples are naturally air-dried or oven-dried at 37 °C, pass through a 30-50 mesh sieve.

II. Determination procedure:

1. Preheat Spectrophotometer for 30 minutes, adjust the wavelength to 400 nm, set zero with distilled water.

Reagent	Test tube (T)	Contrast Tube (C)	Standard tube (S)	Blank tube (B)
Air-dried soil (g)	0.1	0.1	-	-
Reagent I (µL)	475	475	-	-
Reagent II (µL)	125	-	-	-

2. Add reagents in 1 mL glass cuvette as the following:

Mix thoroughly and incubate the reaction for 60 minutes at 37° C water bath, then take the reaction solution in a boiling water bath for 5 minutes immediately (tightly close to prevent moisture loss), flowing water to cool.

Reagent II (µL)	-	125	-	-	
Mix thoroughly, centrifuge at $10000 \times g$ for 10 minutes 25 °C and take the supernatant.					
Supernatant (µL)	500	500	-	-	
Standard solution (µL)	-	-	500	-	
Distilled water (µL)	-	-	-	500	
Reagent III (µL)	1000	1000	1000	1000	

Mix thoroughly and stand at room temperature for 2 minutes. Detect the absorbance of each tube at 400nm and noted as A_T , A_C , A_S and A_B . Calculate $\Delta A_T = A_T - A_C$, $\Delta A_S = A_S - A_B$. Each test tube should be provided with one contrast tube.

III. S-NAG activity calculation:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme that catalyzes the generation 1µmol of p-nitrophenol every gram of soil sample in the reaction system per day.

S-NAG (U/g soil sample) = $\Delta A_T \div (\Delta A_S \div C) \times Vrv \div W \div T = 1.44 \times \Delta A_T \div \Delta A_S \div W$

C: Concentration of standard solution, 100 µmol/L;

Vrv: Total volume in catalyze system, 6×10^{-4} L;

W: Soil sample weight, g;

T: Reaction time, 1 hour = 1/24 day;

Note:

1. If the $\Delta A_T > 1$, the supernatant can be determined after being appropriately diluted. If the $\Delta A_T < 0.02$, the supernatant can be determined after extending the response time. When calculation, multiply the calculation formula by the corresponding dilution factor or change the response time.

Experimental Examples:

1. Take two tubes of 0.1g clover soil, which are the measuring tube and the control tube. Follow the measuring steps and mark them as At and Ac. Calculate Δ At=At-Ac=0.509-0.434=0.075, Δ As=As-Ab=0.604-0.002=0.602, calculate the enzyme activity:

S-NAG activity (U/g soil)=1.44×ΔA÷ΔAs÷W=1.44×0.075÷0.602÷0.1=1.79402 U/g soil.

2. Take two tubes of 0.1g forest soil samples, which are the measuring tube and the control tube. Follow the measuring steps and mark them as At and Ac. Calculate Δ At=A t-Ac=0.574-0.497=0.077, Δ As=As-Ab=0.604-0.002=0.602, calculate enzyme activity:

S-NAG activity (U/g soil)=1.44×ΔA÷ΔA s ÷W=1.44×0.077÷0.602÷0.1=1.84186 U/g soil

Related Products:

NA0364/NA0363	Soil β-Xylosidase(S-β-XYS) Activity Assay Kit
NA0645/NA0404	Soil α-glucosidase(S-α-GC) Activity Assay Kit
NA0850/NA0608	Soil Saccharase(S-SC) Activity Assay Kit