Phosphoenolpyruvate Carboxykinase (PEPCK) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/microplate reader

Cat No: NA0393 Size:100T/96S

Components:

Extract solution: 110 mL ×1. Storage at 4°C.

Reagent I: 18 mL×1, stored at 4°C.

Reagent II: Powder×1, stored at -20°C and protected from light. Dissolve it in 15 mL of Reagent I before use. The reagent that cannot be used up shall be stored at -20°C after repacking, repeat freezing and thawing are prohibited.

Reagent III: $18 \mu L \times 1$, stored at 4°C and protected from light. Before temporary use, add distilled water to dilute according to the volume ratio of 1:120, prepare when the solution will be used.

Reagent IV: 62 μ L×1, stored at 4°C and protected from light. Before temporary use, add distilled water to dilute according to the volume ratio of 7:250, prepare when the solution will be used.

Reagent V: Powder×1, stored at -20°C and protected from light. Dissolve it in 2.5 mL of distilled water before use. The reagent that cannot be used up shall be stored at -20°C after repacking, repeated freezing and thawing are prohibited.

Product Description:

PEPCK (EC 4.1.1.32) is widely found in animals, flowering plants, algae, some fungi and bacteria. The enzyme catalyzes the conversion of oxaloacetic acid to phosphoenolpyruvate, which is the first-rate limiting enzyme regulating gluconeogenesis.

PEPCK catalyzes oxaloacetic acid to form phosphoenolpyruvate and CO₂, pyruvate kinase and lactate dehydrogenase further catalyze the oxidation of NADH to NAD⁺ in turn, and determine the NADH decline rate at 340 nm, which can reflect the PEPCK activity.

Reagents and Equipment Required but Not Provided

Ultraviolet spectrophotometer/microplate reader, low temperature centrifuge, water bath pot, micro quartz cuvette/96 well flat-bottom plate (UV), adjustable pipette, mortar/homogenizer, ice and distilled water

Procedure

I. Extraction of crude enzyme solution:

1. Tissue sample:

The proportion of tissue mass (g): volume of extract solution (mL): 1:5~10 (it is recommended to weigh about 0.1 g of tissue, add 1 mL of extract solution) for ice bath homogenate, then centrifugate at 8000 ×g for 10 minutes at 4°C, take the supernatant, place it on ice for testing.

2. Cell sample:

First, collect bacteria or cells into the centrifuge tube, and then discard the supernatant; the number of cells (10⁴): the volume of the extract solution (mL) is 500-1000:1 (1 mL of the extract solution is recommended to be added to 5 million cells), and the cells are broken by ultrasonic wave in ice bath (Power: 200W or 20%, ultrasonic:3s, interval:10s, Repeat 30 times). Then centrifuged at 8000 ×g for 10 minutes at 4°C, and the supernatant is taken for test.

3. Serum sample: direct determination.

1. Test procedure

- 1. Preheat the spectrophotometer/microplate reader for more than 30 minutes, adjust the wavelength to 340 nm, and adjust to zero with distilled water.
- 2. Working solution: mix Reagent II, Reagent IV in the proportion of 7:1:1(V:V:V) before use. Prepare when the solution will be used.
- 3. Preheat the working solution at 37°C (mammal) or 25°C (other species) for 5 minutes.
- 4. Operation table: Add the following reagents to the micro quartz cuvette/96 well plate (UV) in turn:

Reagent name (µL)	Blank tube(B)	Test tube(T)
Sample	-	10
Distilled water	10	-
Working solution	180	180
Reagent V	10	10

Add Reagent V and mix it immediately. Measure the absorbance value A1 at 340 nm for 10s and A2 at 70s. Calculate $\Delta A_T = A_{1T}$ - A_{2T} , $\Delta A_B = A_{1B}$ - A_{2B} , and $\Delta A = \Delta A_T$ - ΔA_B .

III. Calculation of PEPCK:

- 1. Calculation by micro quartz cuvette
- (1) Calculated by tissue protein concentration:

Definition of enzyme activity: one unit of enzyme activity is defined as the amount of enzyme that catalyzes the consumption of 1 nmol of NADH per minute every milligram of protein.

PEPCK activity (U/mg prot) =
$$\Delta A \div (\epsilon \times d) \times V_{RT} \times 10^9 \div (V_S \times Cpr) \div T = 3215.4 \times \Delta A \div Cpr$$

(2) Calculated by the quality of tissue samples:

Definition of enzyme activity: one unit of enzyme activity is defined as the amount of enzyme that catalyzes the consumption of 1 nmol of NADH per minute every gram of sample.

PEPCK activity (U/g fresh weight) =
$$\Delta A \div (\epsilon \times d) \times V_{RT} \times 10^9 \div (V_S \div V_{ST} \times W) \div T = 3215.4 \times \Delta A \div W$$

(3) By cell count:

Definition of enzyme activity: one unit of enzyme activity is defined as the amount of enzyme that catalyzes the consumption of 1 nmol of NADH per minute every 10 thousand cells

PEPCK activity (U/10⁴ cell)=
$$\Delta A \div (\epsilon \times d) \times V_{RV} \times 10^9 \div (V_S \div V_{ST} \times 500) \div T = 6.43 \times \Delta A$$

(4) Calculated by serum volume:

Definition of enzyme activity: one unit of enzyme activity is defined as the amount of enzyme that catalyzes the consumption of 1 nmol of NADH per minute every milliliter of serum

PEPCK activity (U/mL) = $\Delta A \div (\epsilon \times d) \times V_{RV} \times 10^9 \div V_S \div T = 3215.4 \times \Delta A$

ε: Molar extinction coefficient of NADH, 6.22×10³ L/mol/cm;

d: Light diameter of cuvette, 1 cm;

 V_{RT} : Total volume of reaction system, 2×10^{-4} L;

 V_S : The volume of sample in reaction system, 0.01 mL;

V_{ST}: The volume of extract solution, 1 mL;

Cpr: Sample protein concentration, mg/mL, Self-determination of protein concentration;

W: The mass of sample mass, g;

T: Reaction time, 1 minute;

500: Total number of bacteria or cells, 5 million;

 10^9 : Unit conversion factor, 1 mol = 10^9 nmol.

2. Calculated by 96 well (UV) plate

Change the d=1 cm in the above formula to 0.6 cm (96 well plate optical diameter) for calculation.

Note:

- 1. When A1 is less than 1 or ΔA is greater than 0.6 (96 well UV plate is when A1 is less than 0.6 or ΔA is greater than 0.4), it is recommended to dilute the sample to a proper multiple before determination to improve the detection sensitivity.
- 2. For samples with high enzyme activity, such as animal liver, kidney and other tissues, it is recommended to dilute the extract to 5 times or more for determination.
- 3. The blank tube is a test well for testing the quality of each reagent component. Under normal conditions, the change does not exceed 0.06.
- 4. The steps of sample adding and mixing shall be rapid, and the stopwatch timing shall be accurate.

Experimental Example:

1. Take 0.1g liver and add 1 ml extract solution for homogenate. Take the supernatant and dilute it twice with the extract solution. Then operate according to the determination steps. Use a micro quartz cuvette to measure and calculate: $\Delta A_T = A1_D$ - $A2_D = 1.1298$ -0.4464 = 0.6834, $\Delta A_B = A1_B$ - $A2_B = 1.3819$ -1.3463 = 0.0356, $\Delta A = \Delta A_T$ - $\Delta A_B = 0.6834$ -0.0356 = 0.6478

PEPCK activity (U/g mass) = $3215.4 \times \Delta A \div W \times 2$ (dilution ratio) = $3215.4 \times 0.6478 \div 0.1 \times 2 = 41658.72$ U/g mass.

2. Take 0.1g aloe vera and add 1 ml extract solution for homogenization, take the supernatant and operate according to the determination steps. Measure with micro quartz cuvette and calculate $\Delta A_T = A1_T$ - $A2_T = 1.4015$ -1.2665 = 0.135, $\Delta A_B = A1_B$ - $A2_B = 1.3819$ -1.3463 = 0.0356, $\Delta A = \Delta A_T$ - $\Delta A_B = 0.135$ -0.0356 = 0.0994

PEPCK enzyme activity (U/g mass) = $3215.4 \times \Delta A \div W = 3215.4 \times 0.0994 \div 0.1 = 3196.108 \text{ U/g mass}$.

Related Products:

NA0810/NA0568 Pyruvate Carboxylase PC) Activity Assay Kit

NA0801/NA0560 Fructose 1,6-bisphosphatase FBP) Activity Assay Kit