Nitric oxide (NO) Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/ microplate reader

Catalog Number: NA0510

Size: 100T/96S

Components:

Extract solution: 110 mL \times 1, storage at 4°C.

Reagent 1: powder×1, storage at -20°C and protected from light. Dissolve with 2.5 mL of distilled water before use, mix well, storage at -20°C after packing.

Reagent 2: 3 mL \times 1, storage at 4 $^{\circ}$ C.

Reagent 3A: 10 mL×1, storage at 4°C and protected from light..

Reagent 3B: 10 mL×1, storage at 4° C and protected from light. Before use, mix well according to Reagent 3A: Reagent 3B = 1:1 (V:V). Prepare according to sample number.

Standard: 1 mL \times 1, 10 μ mol/mL NaNO₂, storage at 4 $^{\circ}$ C.

Product Description

Nitric Oxide (NO) is a highly unstable biological free radical with small molecule, simple structure, NO is gas at room temperature, slightly soluble in water and fat-soluble, which can diffuse through biofilms quickly. As a new type of biological messenger molecule, it plays a role in transmitting signals between cells and within cells. It is widely distributed in various tissues, especially neural tissues. It also plays a very important role in the nervous, circulatory, respiratory, digestive, and urogenital systems of the body. NO is easily oxidized to form NO₂⁻ and NO₃⁻ in the body or in aqueous solution. This method uses nitrate reductase to reduce NO₃⁻ to NO₂⁻ specifically. Under acidic conditions, NO₂⁻ and diazonium sulfonamide produce diazo compounds. The compounds could further coupled with naphthyl vinyl diamine, the product has a characteristic absorption peak at 550 nm, and its absorbance value can be measured to calculate the NO content.

Reagents and Equipment Required but Not Provided.

Spectrophotometer/microplate reader, low temperature centrifuge, water bath/constant temperature incubator, adjustable pipette, micro glass cuvette/ 96-well flat-bottom plate, mortar/homogenizer, ice and distilled water, EP tube.

Procedure:

I. Sample extraction:

1. Tissue: The mass (g): volume of Extract solution (mL)= 1:5 ~ 10, Suggest that weigh 0.2 g of sample, add 1 mL of Extract solution and homogenate in ice bath. Centrifuge at 4°C and 12000 rpm for 15 minutes and discard precipitation, take the supernatant on ice for test.

- 2. Cells or bacteria: The ratio of cell number (10⁴): volume of Extract solution(mL) 500-1000: 1, Collect 10 million bacteria or cells into a centrifuge tube, add 1 mL of Extract solution to ultrasonically break bacteria or cells (power 300W, ultrasonic 3s, 7s interval, total time 3 min). Centrifuge at 4°C and 12000 rpm for 15 minutes and discard precipitation, take the supernatant on ice for test.
- 3. Liquid sample: direct determination

II. Determination procedure:

- 1. Preheat the spectrophotometer/microplate reader 30 min, adjust wavelength to 550 nm, set zero with distilled water.
- 2. Keep Reagent 1 on ice.
- 3. Dilute the standard to 0.2、0.1、0.05、0.025、0.0125、0.00625、0.003125 μmol/mL with distilled water.
- 4. Sampling table (add the following reagents in a 0.6 mL EP tube)

1 0	<u> </u>		
Reagent (μL)	Blank Tube (Ab)	Test Tube (At)	Standard Tube (As)
Distilled water	120		20
Standard solution			100
Sample		100	
Reagent 1		20	
Mix and react for 60min at 37°C water bath.			
Reagent 2	20	20	20
Mix and react for 5 min at room temperature. Centrifuge 3500 rpm for 10 minutes and take supernatant.			
Supernatant	100	100	100
Reagent 3	100	100	100

Vortex to mix, react for 10 minutes at room temperature, and measurement tube at 550 nm in micro glass cuvette/96-well flat-bottom plate, and record them as Ab, At, and As. Calculate Δ At=At-Ab, Δ As=As-Ab.

III. Calculation:

- 1. According to concentration of standard solution and absorbance to create the standard curve, take standard solution as X-axis, ΔAs as Y-axis. Take ΔA into the equation to obtain x ($\mu mol/mL$).
- 2. Calculation of NO content
- (1) Protein concentration

NO (
$$\mu$$
mol/mg prot) = x ×Vs ÷(Cpr ×Vs)=x ÷Cpr

(2) Sample weight

NO (
$$\mu$$
mol/g fresh weight) = x ×Vs ÷(W ×Vs ÷Ve)=x ÷W

(3) The number of bacteria or cells:

NO
$$(\mu mol/10^4 \text{ cell}) = x \times Vs \div (\text{cell number} \times Vs \div Ve) = x \div \text{Number of cells}$$

(4) Liquid volume:

NO
$$(\mu mol/mL) = x \times V_S \div V_S = x$$

Vs: sample volume, 0.1 ml;

Ve: extraction volume, 1 ml;

Cpr: sample protein concentration, mg/mL;

W: Sample weight, g

Number of cells: in units of 10⁴.

Note:

- 1. When the At is higher than 1.2, it is recommended to test the sample after dilution and multiply it by the dilution factor in the calculation formula.
- 2. Try to use fresh samples for testing. Reagent 2 is corrosive. Please take protective measure during operation.
- 3. Tissue color has no effect on experimental results.
- 4. When the culture medium to be measured has color (has absorption at 550nm), you need to test the control tube of the sample, that is, replace the reagent 1 and the reagent 3 with the same volume of distilled water. At this time, the kit size is 100T/48S.
- 5. The calculation of ΔAt is " $\Delta At = At Ab$ " in the presence of Control tube.

Technical Specifications:

Minimum Detection Limit: 0.00074 µmol/mL

Linear Range: 0.00078-0.25 µmol/mL

Recent Product citations:

[1] Peng X, Zhu L, Guo J, et al. Enhancing biocompatibility and neuronal anti-inflammatory activity of polymyxin B through conjugation with gellan gum[J]. International journal of biological macromolecules, 2020, 147: 734-740.