Pyruvate Dehydrogenase(PDH) Activity Assay Kit

Note: Take two or three different samples for prediction before test. Operation Equipment: Spectrophotometer/Microplate reader Cat No: NA0595 Size: 100T/96S

Components:

Reagent I: Liquid 110 mL×1. Storage at 4°C.

Reagent II: Liquid 1 mL×1. Storage at -20°C. Protect from light.

Reagent III: Liquid 20 mL×1. Storage at 4°C.

Reagent IV: Powder×1. Storage at 4°C.

Reagent V: Powder×1. Storage at -20°C.

Reagent VI: Powder×1. Storage at 4°C. Add 1 mL of distilled water before use.

Reagent VII: Powder×1. Storage at 4°C.

Working solution: Add Reagent IV, Reagent V, Reagent VII and 0.5 mL of Reagent VI to Reagent III, fully dissolved.

Product Description:

PDH widely exist in animals, plants, microorganism and cultured cells, which is the rate-limiting enzyme of acetylformic acid oxidative and decarboxylate catalyzed by Pyruvate dehydrogenase complex (PDHC). The decarboxylation of acetylformic acid forms hydroxyethyl-TPP, links glycolysis to the three carboxylic acid cycle.

PDH catalyzes the dehydrogenation of acetylformic acid and reduct 2, 6-dichlorophenol indophenol (2,6-DCPIP), which makes the absorption of 605 nm decrease.

Reagents and Equipment Required but Not Provided:

Spectrophotometer/microplate reader, water bath, desk centrifuge, adjustable pipette, micro glass cuvette/96 well flat-bottom plate, mortar/homogenizer, ice and distilled water.

Procedure:

I. Sample preparation:

Weigh tissue sample of 0.1 g or collect cells sample of 5 million and add 1 mL of Reagent I and 10 μ L of Reagent II, homogenate with mortar/homogenizer on ice. Centrifuge at 11000 g for 10 minutes at 4°C to remove insoluble materials and take the supernatant on ice before testing.

II. Determination procedure:

1. Preheat the spectrophotometer/microplate reader 30 minutes, adjust wavelength to 605 nm, set zero with distilled water.

2. Each sample requires 180 μ L of working solution. Take a certain amount of working solution

according to the number of samples and it at 37°C(mammal) or 25°C(other species) for 5 minutes.

3. Blank tube: Add 10 μ L of distilled water, and 180 μ L of working solution to micro glass cuvette/96 well flat-bottom plate. Mix thoroughly and timing, measure the absorption at 605 nm at the initial time and 1 minute, recorded as A1 and A2 respectively, calculate $\Delta A_B = A1-A2$.

4. Test tube: Add 10 μ L of supernatant, and 180 μ L of working solution to micro glass cuvette/96 well flat-bottom plate. Mix thoroughly and timing, measure the absorption at 605 nm at the initial time and 1 minute, recorded as A3 and A4 respectively, calculate $\Delta A_T = A3 - A4$, $\Delta A = \Delta A_T - \Delta A_B$.

III. PDH Calculation:

A. Micro quartz cuvette

1) Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every milligram of protein.

PDH (U/mg prot) = $[\Delta A \times Vrv \div (\varepsilon \times d) \times 10^9] \div (Vs \times Cpr) \div T=904.762 \times \Delta A \div Cpr$

2) Sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every gram tissue.

PDH (nmol/min /mg weight)= $[\Delta A \times Vrv \div (\varepsilon \times d) \times 10^9] \div (W \times Vs \div Vsv) \div T = 913.81 \times \Delta A \div W$

3) Bacteria or cell density

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every 10000 cells or bacteria.

PDH (nmol/min /10⁴ cell)=[$\Delta A \times Vrv \div (\epsilon \times d) \times 10^9$]÷(500×Vs÷Vsv)÷T=1.828× ΔA

Vrv: Reaction total volume, 1.9×10⁻⁴ L;

 ϵ : Molar extinction coefficient, 2.1×10⁴ L/mol/cm;

d: Light path of cuvette, 1 cm;

Vs: The sample volume,0.01 mL;

Vsv: The Reagent I and II volume, 1.01 mL;

T: Reaction time, 1 minute;

Cpr: Sample protein concentration, mg/mL;

W: Sample quality, g;

500: The total number of bacteria and cells, 5 million.

B. 96 well flat-bottom plate

1) Protein concentration:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every milligram of protein.

 $PDH(U/mg \text{ prot}) = [\Delta A \times Vrv \div (\epsilon \times d) \times 10^9] \div (Vs \times Cpr) \div T = 1809.524 \times \Delta A \div Cpr$

2) Sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every gram of tissue.

PDH(nmol/min /mg weight)= $[\Delta A \times Vrv \div (\epsilon \times d) \times 10^9] \div (W \times Vs \div Vsv) \div T = 1827.62 \times \Delta A \div W$

3) Bacteria or cell density

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the consumption of 1 nmol of 2,6-DCPIP per minute every 10000 cells or bacteria.

 $PDH(nmol/min/10^{4} cell) = [\Delta A \times Vrv \div (\epsilon \times d) \times 10^{9}] \div (500 \times Vs \div Vsv) \div T = 3.655 \times \Delta A$

Vrv: Reaction total volume, 1.9×10⁻⁴ L;

 ϵ : Molar extinction coefficient, 2.1×10⁴ L/mol/cm;

d: Light path of cuvette, 0.5 cm;

Vs: The sample volume,0.01 mL;

Vsv: The reagent I and II volume, 1.01 mL;

T: Reaction time, 1 minute;

Cpr: Sample protein concentration, mg/mL;

W: Sample quality, g;

500: The total number of bacteria and cells, 5 million.

Note:

1. During the determination, all samples are placed on ice to avoid denaturation and inactivation.

2. The measured value of ΔA should in range of 0.01~ 0.25. If ΔA >0.25, the sample should be properly diluted.

3. Since Reagent I contains a certain concentration of protein (about 1mg/mL), it is necessary to subtract the protein content of Reagent I when determining the concentration of sample protein.

Experimental Examples:

1. Take 0.1 g of lung, add 1 mL of Reagent I and 10 μ L Reagent II, grind the homogenate with ice bath, centrifuge at 11000g and 4°C for 10 min, take the supernatant and put it on ice, operate according to the determination steps, and calculate the $\Delta A_T = A3 - A4 = 0.701 - 0.615 = 0.086$, $\Delta A_B = A1 - A2 = 0.9 - 0.898 = 0.002$.

PDH activity (U/g mass) = $1827.62 \times (\Delta A_T - \Delta A_B) \div W = 1535.2 \text{ U/g mass.}$

2. Take 0.1 g of Echinochloa crusgalli, add 1 mL of Reagent I and 10 μ L Reagent II, grind the homogenate with ice bath, centrifuge at 11000g and 4°C for 10 min, take the supernatant and put it on ice, operate according to the determination steps, and calculate the $\Delta A_T = A3 - A4 = 0.835 - 0.813 = 0.022$, $\Delta A_B = A1 - A2 = 0.898 - 0.897 = 0.001$.

PDH activity (U/g mass) = $1827.62 \times (\Delta AT - \Delta AB) \div W = 383.8 \text{ U/g mass.}$

Recent Product Citations:

[1] Peng S, Wang Y, Zhou Y, et al. Rare ginsenosides ameliorate lipid overload-induced myocardial insulin resistance via modulating metabolic flexibility[J]. Phytomedicine, 2019, 58: 152745.

References:

[1] Guitart M, Andreu A L, García-Arumi E, et al. FATP1 localizes to mitochondria and enhances

pyruvate dehydrogenase activity in skeletal myotubes[J]. Mitochondrion, 2009, 9(4): 266-272.

Related Products:

NA0812/NA0570	Acetaldehyde Dehydrogenase(ALDH) Activity Assay Kit
NA0717/NA0476	Citric Acid(CA) Content Assay Kit
NA0799/NA0558	Succinate Dehydrogenase(SDH) Activity Assay Kit