Water Chromium (VI) Content Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Cat No: NA0664 **Size:** 50T/48S

Components:

Reagent I: Liquid 4mL×1, store at room temperature.

Reagent II: Powder×1, store at 4°C. Dissolve with 2.8mL of acetone (self-provided) before use. It can't be used after the color becomes darker.

Standard: Liquid 10 mL \times 1, 2 μ mol/mL Cr⁶⁺, store at room temperature. Dilute 160 times before use, prepare as 0.0125 μ mol/mL standard solution.

Description:

Cr⁶⁺ mainly comes from sewage and exhaust gas discharged from electroplating, smelting, surface treatment industries. Cr⁶⁺ enters the human body through the digestive tract, respiratory tract, skin, and mucous membranes, causing injury, even genetic mutation and carcinogenesis.

In an acidic environment, Cr^{6+} interacts with diphenylcarbazide to form a purple-red complex with characteristic absorption at 540 nm.

Required but not provided:

Spectrophotometer, transferpettor, 1mL glass cuvette, acetone and distilled water.

Protocol:

1. Preheat spectrophotometer for 30 min, adjust wavelength to 540nm, set zero with distilled water.

2. Sample table:

Reagents	Blank tube (B)	Test tube (T)	Standard tube (S)
Distilled water (μL)	1000		
0.2 μmol/mL standard (μL)			1000
Water sample (μL)		1000	
Reagent I (μL)	50	50	50
Reagent II (μL)	50	50	50

Mix thoroughly, react for 10 min at room temperature, and then detect the absorbance at 540nm, record A_B , A_S , A_T . $\Delta A_{T=}$ $A_{T-}A_B$, $\Delta A_{s=}$ A_s - A_B .

Calculation:

 $Cr^{6+} (\mu mol / mL) = [C_S \times (A_T - A_B) \div (A_S - A_B)] = 0.0125 \times (A_T - A_B) \div (A_S - A_B)$

C_S : 0.0125 µmol/mL;

Note:

- 1. Directly measure colorless water samples;
- 2. Colored water sample: Take 1mL of water sample, add 50 μ L of Reagent I, cover, mix well and place in a boiling water bath for 2 minutes, fade; after cooling, add 50 μ L of Reagent II, mix thoroughly; leave at room temperature for 10 minutes. The absorbance is measured at 540 nm and recorded as A_T .
- 3. When the iron in the water sample is about 50 times of Cr⁶⁺, it will cause yellow and interfere with the measurement. It is not suitable to use this kit for measurement; 10 times of vanadium can cause interference, but the color of vanadium and the reagent will disappear after 20min; Molybdenum and mercury sinks above 200 mg/L cause interference.
- 4. Cr⁶⁺ is toxic ions of heavy metals. Pay attention to safety during the measurement. Wear masks and gloves to avoid inhalation or contamination.
- 5. When the absorbance is greater than 0.9, it is recommended to determine the sample after dilution.

Related Products:

NA0665/NA0423 Water Mercury Ion(Hg²⁺) Content Assay Kit

NA0662/NA0379 Total Phosphorus Content Assay Kit

NA0302/NA0301 Tissue Iron Content Assay Kit

NA0296/NA0295 Blood Ammonia Content Assay Kit

Technical Specifications:

The detection limit: 0.0003491 μmol/mL Linear range: 0.00039-0.025 μmol/mL