Nitric oxide (NO) Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer

Catalog Number: NA0752

Size:50T/48S

Components:

Extract solution: $60\text{mL} \times 1$, storage at 4°C .

Reagent 1: powder×2, storage at -20°C and protected from light. It's not easy to see the powder in the tube, just Dissolve with 2.5mL of distilled water per reagent 1 before use. storage at -20 °C after subpackage.

Reagent 2: $6mL\times1$, storage at $4^{\circ}C$.

Reagent 3A: 20mL×1, storage at 4°C and protected from light.

Reagent 3B: $20\text{mL}\times1$, storage at 4°C and protected from light. Before use, mix well according to Reagent 3A: Reagent 3B = 1:1 (V:V). Prepare according to sample number.

Standard: 1 mL×1, 10 μ mol/mL of NaNO₂, storage at 4°C.

Product Description

Nitric Oxide (NO) is a highly unstable biological free radical with small molecule, simple structure, NO is gas at room temperature, slightly soluble in water and fat-soluble, which can diffuse through biofilms quickly. As a new type of biological messenger molecule, it plays a role in transmitting signals between cells and within cells. It is widely distributed in various tissues, especially neural tissues. It also plays a very important role in the nervous, circulatory, respiratory, digestive, and urogenital systems of the body. NO is easily oxidized to form NO₂⁻ and NO₃⁻ in the body or in aqueous solution. This method uses nitrate reductase to reduce NO₃⁻ to NO₂⁻ specifically. Under acidic conditions, NO₂⁻ and Diazonium sulfonamide produce diazo compounds. The compounds could further coupled with naphthyl vinyl diamine, the product has a characteristic absorption peak at 550 nm, and its absorbance value can be measured to calculate the NO content.

Reagents and Equipment Required but Not Provided.

Spectrophotometer, low temperature centrifuge, water bath/constant temperature incubator, adjustable pipette, 1mL glass cuvette, mortar/homogenizer, ice and distilled water, EP tube.

Procedure:

I. Sample extraction:

Tissue: The mass (g): volume of Extract solution (mL)= $1:5 \sim 10$, Suggest that weigh 0.2g of sample, add 1mL of Extract solution and homogenate in ice bath. Centrifuge at 4° C and 12000 rpm for 15 minutes and take the supernatant on ice for testing

Cells or bacteria: The ratio of cell number (10⁴): volume of Extract solution (mL) 500-1000: 1, Collect 10 million bacteria or cells into a centrifuge tube, add 1mL of Extract solution to ultrasonically break bacteria or cells (power 300W, ultrasonic 3s, 7s interval, total time 3 min). Centrifuge at 4°C and 12000 rpm for 15 minutes and take the supernatant on ice for testing.

Liquid sample: direct determination

II. Determination procedure:

- 1. Preheat the spectrophotometer 30min, adjust wavelength to 550 nm, set zero with distilled water.
- 2. Keep reagent 1 on ice.
- 3. Dilute the standard to 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125, 0.0015625 $\mu mol/mL$ with distilled water.
- 4. Sampling table (add the following reagents in a EP tube)

	0 0		
Reagent (μL)	Blank Tube (Ab)	Test Tube (At)	Standard Tube (As)
Distilled water	600		100
Standard solution			500
Sample		500	
Reagent 1		100	
Mix and react for 60min at 37°C water bath			
Reagent 2	100	100	100
Mix and react for 5min at room temperature. Centrifuge at 3500 rpm for 10 minutes and take supernatant			
Supernatant	500	500	500
Reagent 3	500	500	500

Vortex to mix, react for 10 minutes at room temperature, and measurement tube at 550 nm in 1 mL glass cuvette, and record them as Ab, At, and As. Calculate Δ At=At-Ab, Δ As=As-Ab.

III. Calculation:

- 1. According to concentration of standard solution and absorbance to create the standard curve, take standard solution as X-axis, ΔAs as Y-axis. Take ΔA into the equation to obtain x (μmol/mL).
- 2. Calculation of NO content
- (1) Protein concentration

NO (
$$\mu$$
mol/mg prot) = x ×Vs ÷(Cpr ×Vs)=x ÷Cpr

(2) Sample weight

NO (
$$\mu$$
mol/g fresh weight) = x ×Vs ÷(W ×Vs ÷Ve)=x ÷W

(3) The number of bacteria or cells:

NO
$$(\mu \text{mol}/10^4 \text{ cell}) = x \times V_s \div (\text{cell number} \times V_s \div V_e) = x \div \text{Number of cells}$$

(4) Liquid volume:

NO
$$(\mu mol/mL) = x \times V_S \div V_S = x$$

Vs: sample volume, 0.5 mL;

Ve: extraction volume, 1 mL;

Cpr: sample protein concentration, mg/mL;

W: Sample weight, g Number of cells: 10⁴

Note:

- 1. When the At is higher than 1, it is recommended to test the sample after dilution and multiply it by the dilution factor in the calculation formula.
- 2. Try to use fresh samples for testing. Reagent 2 is corrosive. Please take protective measure during operation.
- 3. Tissue color has no effect on experimental results.
- 4. When the culture medium to be measured has color (has absorption at 550nm), you need to test the control tube of the sample, that is, replace the reagent 1 and the reagent 3 with the same volume of distilled water. At this time, the kit size is 50T/24S.
- 5. The calculation of ΔAt is " $\Delta At = At Ab$ " in the presence of Control tube.

Technical Specifications:

Minimum Detection Limit: 0.0004 μmol/mL

Linear Range: 0.00078-0.1 µmol/mL

Recent Product citations:

[1] Peng X, Zhu L, Guo J, et al. Enhancing biocompatibility and neuronal anti-inflammatory activity of polymyxin B through conjugation with gellan gum[J]. International journal of biological macromolecules, 2020, 147: 734-740.