Soil nitrite reductase (S-NiR) Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Spectrophotometer/ Microplate reader

Catalog Number: NA0412

Size:100T/48S

Components:

Reagent 1: Powder×1, storage at 4°C. Dissolve with 1mL of distilled water before use. The reagent can be saved for 2 weeks at 4°C. Dilute 400 times with distilled water before use, prepared when the solution will be used.

Reagent 2: Powder×1, storage at 4°C. Dissolve with 15mL of distilled water before use. The reagent can be saved for 2weeks at 4°C.

Reagent 3:15 mL×1, storage at 4°C. This solution is a saturated solution, just use the supernatant

Reagent 4:15 mL×1, storage at RT and protected from light.

Reagent 5:15 mL×1, storage at RT and protected from light.

Standard: 1 mL×1, storage at 4°C. 10 μmol/mL of NaNO₂ standard solution.

Product Description:

Soil nitrite reductase (S-NiR) is one of the key enzymes in denitrification. It is a reductase produced by soil denitrifying bacteria. It can reduce NO₂⁻ to NO. The activity reflects the conversion efficiency of nitrogen in the process of biodegradation, and provides a certain basis for the study of nitrogen conversion.

Nitrite reductase can reduce NO_2^- to NO, and reduce the NO_2^- in the sample to participate in the diazotization reaction to produce a purple-red compound, that is, the change in absorbance at 540nm can reflect the activity of nitrite reductase in soil.

Reagents and Equipment Required but Not Provided:

Spectrophotometer/ Microplate reader, adjustable transferpettor, balance, mortar/homogenizer, centrifuge, micro glass cuvette/ 96-well flat-bottom plate, sieve (30-50 mesh, or smaller), ice and distilled water.

Procedure:

I. Sample preparation

Fresh soil samples are naturally air-dried or oven dried at 37°C and sieved through 30-50 mesh.

II. Determination

- 1. Preheat spectrophotometer/microplate reader for 30 min, adjust the wavelength to 540 nm and set the counter to zero with distilled water.
- 2. Dilute the standard solution with distilled water to prepare 0.8 、0.6 、0.4 、0.2 、0.1 、0.05 μmol/mL standard solution.

3. Add reagent to a 1.5 mL EP tube:

	Non-matrix	Blank tube1	Control	Test tube	Standard	Blank tube
	tube (An)	(Ab1)	tube (Ac)	(At)	tube (As)	(Ab)
sample (g)	-	-	0.05	0.05	-	-
Distilled water	-	100	100	-	-	-
(µL)						
Reagent 1 (µL)	100	-	-	100	-	-
Reagent 2 (µL)	100	100	100	100	-	-
After mixing, react at 25°C for 3 h						
Reagent 3 (µL)	100	100	100	100	-	-
Fully shake for 30s, centrifuge at 10000 rpm for 10 min at 4°C.					-	-
Superatant (µL)	100	100	100	100	-	-
Standard (µL)	-	-	-	-	100	-
Reagent 4 (µL)	100	100	100	100	100	100
Reagent 5 (µL)	100	100	100	100	100	100
Distilled water						100
(µL)						

Mix well and react at room temperature for 15min. Take 200 μ L into a micro glass cuvette/96 well plate and measure the absorbance value at the wavelength of 540nm, and record them as An, Ab1, Ac, At, As and Ab, and calculate $\Delta A = (An-Ab1)-(At-Ac)$, $\Delta As = As-Ab$. Non-matrix tube (An), Blank tube1 (Ab1), Blank tube (Ab) only need to be done 1-2 times.

III. Calculation:

1. According to concentration of standard solution and absorbance to create the standard curve, take standard solution as X-axis, Δ As as Y-axis. Take Δ A into the equation to obtain x (μ mol/mL)

2. Fermentation broth:

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the reduction of 1μ mol NO₂- per day every gram soil in the reaction system.

S-NiR (U/g) =
$$x \times Vr \div T \div W = 2.4 \times x \div W$$
.

T: reaction time, 3h=1/8 d;

V1: Enzymatic reaction volume, 0.3 mL;

W: soil weight, g;

Related Products:

NA0651/NA0410 Soil Hydroxylamine Reductase Activity Assay Kit NA0728/NA0486 Soil Lignin peroxidase(S-Lip) Activity Assay Kit

NA0361/NA0360 Soil β-1,4-Glucanase Activity Assay Kit

NA0371/NA0362 Soil Leucine Arylamidase (S-LAP) Activity Assay Kit

NA0850/NA0608 Soil Saccharase(S-SC) Activity Assay Kit